ESC Journals
Current electrophysiology signal recording and mapping systems have limited dynamic range (DR) and bandwidth, which causes loss of valuable information during acquisition of cardiac signals. We evaluated a novel advanced signal processing platform with the objective to obtain and assess additional information of clinical importance.
Over 10 canines, we compared intracardiac recordings within all cardiac chambers, in various rhythms, in pacing and during radiofrequency (RF) ablation across two platforms; a conventional system and the PURE EP™ [(PEP); Bio Sig Technologies, Inc., Los Angeles, CA, USA]. Recording cardiac signals with varying amplitudes were consistently and reproducibly observed, without loss of detail or introduction of artefact. Further the amplitude of current of injury (COI) on the unipolar signals correlated with the instantaneous contact force (CF) recorded on the sensing catheter in all the animals (
Compared to current system, the PEP system provided incremental information including identifying conduction tissue signals, estimates of CF and a surrogate for lesion formation. This novel signal processing platform with increased DR and minimal front-end filtering may be useful in clinical practice.