In order to bring you the best possible user experience, this site uses Javascript. If you are seeing this message, it is likely that the Javascript option in your browser is disabled. For optimal viewing of this site, please ensure that Javascript is enabled for your browser.

The free consultation period for this content is over.

It is now only available year-round to ESC Professional Members, Fellows of the ESC, and Young combined Members

N-cadherin promotes cardiac regeneration by stabilizing beta-catenin

Session Poster Session 6

Speaker Yi-Shuan Tseng

Event : ESC Congress 2019

  • Topic : basic science
  • Sub-topic : Basic Science - Cardiovascular Development and Anatomy: Stem Cells, Cell Cycle, Cell Senescence, Cell Death
  • Session type : Poster Session

Authors : YS Tseng (Taipei,TW), MY You (Taipei,TW), YC Hsu (Taipei,TW), KC Yang (Taipei,TW)

YS Tseng1 , MY You1 , YC Hsu1 , KC Yang2 , 1National Taiwan University, Department and Graduate Institute of Pharmacology - Taipei - Taiwan , 2National Taiwan University Hospital, Division of cardiology, Department of Internal Medicine - Taipei - Taiwan ,


Background: Although the adult mammalian heart fails to regenerate after injury, it is known that newborn mice within a week have full cardiac regenerative capacity. The molecular determinants underlying the disparate regenerative capacity between neonatal and adult mice, however, remain incompletely understood. Exploiting RNA sequencing in isolated cardiomyocytes from neonatal and adult mouse heart, we identified Cdh2, which encodes the adherence junction protein N-cadherin, as a potential novel mediator of cardiac regeneration. Cdh2 expression levels were much higher in neonatal, compared with adult, cardiomyocytes and showed a strong positive correlation with that of multiple cell cycle genes. N-cadherin has been reported to be essential for embryonic cardiac development; its role in cardiac regeneration, however, remains unknown.
Purpose: To determine the role of Cdh2 (N-cadherin) in cardiac regeneration and to investigate the underlying molecular mechanisms.
Methods: Apical resection in postnatal day 1 mice was used as a cardiac regenerative model. The in vitro gain/loss-of function studies of Cdh2/N-cadherin was performed in postnatal day 1 neonatal mouse cardiomyocytes (P1CM) and human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM). N-cadherin inhibitor exherin was used to study the effects of N-cadherin in vivo.
Results: Comparing to sham-operated control, Cdh2 was significantly upregulated in mouse cardiac apex and border zone following apical resection, which was accompanied with increased cardiomyocyte proliferation activity. In vitro, knocking down Cdh2 or inhibition of N-cadherin activity with exherin in P1CM significantly reduced the proliferative activity of cardiomyocytes, whereas overexpression of Cdh2 markedly increased the proliferation of P1CM. In addition, forced expression of Cdh2 resulted in significant upregulation of multiple cell cycle genes, including Ccnd1 (Cyclin D1) and Pcna (proliferating cell nuclear antigen), in P1CM. In vivo inhibition of N-cadherin in P1 neonatal mice with exherin following apical resection impaired cardiac regeneration and increased scar formation (Figure). Knocking down CDH2 in human iPSC-CMs significantly reduced the proliferative activity and the expression levels of cell cycle gene CCND1 in iPSC-CMs. Mechanistically, we demonstrated that the pro-mitotic effects of N-cadherin in cardiomyocytes were mediated, at least partially, by stabilizing ß-catenin, a pro-mitotic transcription factor, through direct interaction with its cytoplasmic domain and/or inactivation of GSK3ß, a critical component of ß-catenin destruction complex.
Conclusion: Our study uncovered a previously unrecognized role of Cdh2 (N-cadherin) in cardiomyocyte proliferation and cardiac regeneration. Enhancing cardiac expression or activity of N-cadherin, therefore, could be a potential novel therapeutic approach to promote cardiac regeneration and restore cardiac function in adult heart following injury.

Members get more

Join now
  • 1ESC Professional Members – access all resources from general ESC events 
  • 2ESC Association Members (Ivory, Silver, Gold) – access your Association’s resources
  • 3Under 40 or in training - with a Combined Membership, access all resources
Join now

Our sponsors

ESC 365 is supported by Bayer, Boehringer Ingelheim and Lilly Alliance, Bristol-Myers Squibb and Pfizer Alliance, Novartis Pharma AG and Vifor Pharma in the form of educational grants. The sponsors were not involved in the development of this platform and had no influence on its content.

logo esc

Our mission: To reduce the burden of cardiovascular disease

Who we are