In order to bring you the best possible user experience, this site uses Javascript. If you are seeing this message, it is likely that the Javascript option in your browser is disabled. For optimal viewing of this site, please ensure that Javascript is enabled for your browser.

The free consultation period for this content is over.

It is now only available year-round to EHRA Ivory (& above) Members, Fellows of the ESC and Young combined Members

Voltage field simulation of transesophageal left atrial pacing in combination with cardiac resynchronization therapy

Session Poster session 3

Speaker Johannes Hoerth

Congress : EHRA 2019

  • Topic : arrhythmias and device therapy
  • Sub-topic : Cardiac Resynchronization Therapy
  • Session type : Poster Session
  • FP Number : P1547

Authors : K Goekues (Offenburg,DE), M Heinke (Offenburg,DE), J Hoerth (Offenburg,DE), M Schleh (Offenburg,DE)

K Goekues1 , M Heinke1 , J Hoerth1 , M Schleh1 , 1University of Applied Sciences Offenburg - Offenburg - Germany ,


Background: Transesophageal left atrial (LA) pacing and transesophageal LA ECG recording are semi-invasive techniques for diagnostic and therapy of supraventricular rhythm disturbance. Cardiac resynchronization therapy (CRT) with right atrial (RA) sensed biventricular pacing is an established therapy for heart failure patients with reduced left ventricular (LV) ejection fraction, sinus rhythm and interventricular electrical desynchronization.
Purpose: The aim of the study was to evaluate electromagnetic and voltage pacing fields of the combination of RA pacing, LA pacing and biventricular pacing in patients with long interatrial and interventricular electrical desynchronization.
Methods: The modelling and electromagnetic simulations of transesophageal LA pacing in combination with RA pacing and biventricular pacing would be staged and analyzed with the CST (Computer Simulation Technology) software. Different electrodes were modelled in order to simulate different types of bipolar pacing in the 3D-CAD Offenburg heart rhythm model: The bipolar Solid S (Biotronik) electrode where modelled for RA pacing and right ventricular (RV) pacing, Attain 4194 (Medtronic) for LV pacing and TO8 (Osypka) multipolar esophageal electrode with hemispheric electrodes for LA pacing.
Results: The pacemaker amplitudes for the electromagnetic pacing simulations were performed with 3 V for RA pacing, 1.5 V for RV pacing, 50 V for LA pacing and 3V for LV pacing with pacing impulse duration of 0.5 ms for RA, RV and LV pacing and 10 ms for LA pacing. The atrioventricular pacing delay after RA pacing was 140 ms. The different pacing modes AAI, VVI, DDD, DDD0V and DDD0D were evaluated for the analysis of the electric pacing field propagation of pacemaker, CRT and LA pacing. The pacing results were compared at minimum (LOW) and maximum (HIGH) parameter settings. While the LOW setting produced fewer tetrahedral and more inaccurate results, the HIGH setting produced many tetrahedral and therefore more accurate results.  
Conclusions: The simulation of the combination of transesophageal LA pacing with RA sensed biventricular pacing is possible with the Offenburg heart rhythm model. The new temporary 4-chamber pacing method may be additional useful method in CRT non-responders with long interatrial electrical delay.

Based on your interests

Members get more

Join now
  • 1ESC Professional Members – access all resources from ESC Congress and ESC Asia with APSC & AFC
  • 2ESC Association Members (Ivory, Silver, Gold) – access your Association’s congress resources
  • 3Under 40 or in training - with a Combined Membership, access resources from all congresses
Join now

Our sponsors

ESC 365 is supported by Bayer, Boehringer Ingelheim and Lilly Alliance, Bristol-Myers Squibb and Pfizer Alliance, Novartis Pharma AG and Vifor Pharma in the form of educational grants. The sponsors were not involved in the development of this platform and had no influence on its content.

logo esc

Our mission: To reduce the burden of cardiovascular disease

Who we are